Exercise 2.104#
For 1.
we have:
\[\begin{split}
(I * M)(w,y) ≔ \bigvee_{x \in X} I(w,x) \otimes M(x,y) \\
(I * M)(w,y) ≔ I(w,w) \otimes M(w,y) \vee \bigvee_{x \in X \setminus \{w\}} 0 \otimes M(x,y)
\end{split}\]
Using Definition 2.2. part (a), any \(0 \otimes x\) term is always \(0\), so this reduces to:
\[
(I * M)(w,y) ≔ M(w,y)
\]
For 2.
we have:
\[
((M * N) * P)(w,z) = \bigvee_{y \in Y} \big( \bigvee_{x \in X} M(w,x) ⊗ N(x,y) \big) ⊗ P(y,z)
\]
Using symmetry, part (b) of Proposition 2.87, and symmetry again:
\[
((M * N) * P)(w,z) = \bigvee_{y \in Y} \bigvee_{x \in X} M(w,x) ⊗ N(x,y) ⊗ P(y,z)
\]
Pulling out \(M(w,x)\) with part (b) of Proposition 2.87 again, we have:
\[
\bigvee_{x \in X} M(w,x) ⊗ \big( \bigvee_{y \in Y} N(x,y) ⊗ P(y,z) \big) = (M * (N * P))(w,z)
\]