Exercise 7.66#
In the topos \(\textbf{Set}\), where \(Ξ© = πΉ\), consider the predicate \(p: βΓβ€\to πΉ\) given by
\[\begin{split} \begin{align*} p(n, z) &= \begin{cases} \text{true} & \text{if } n \leq |z| \\ \text{false} & \text{if } n > |z| \end{cases} \end{align*} \end{split}\]
What is the set of \(n \in β\) for which the predicate \(\forall(z: β€). p(n, z)\) holds?
What is the set of \(n \in β\) for which the predicate \(\exists(z: β€). p(n, z)\) holds?
What is the set of \(z \in β€\) for which the predicate \(\forall(n: β). p(n, z)\) holds?
What is the set of \(z \in β€\) for which the predicate \(\exists(n: β). p(n, z)\) holds?
Alternative answer#
{0}
β
{β} (but see Does the set of natural numbers contain infinity? - MSE)
β€