Exercise 2.20#
Using reflexivity, we have that \(u \leq u\). Add this to the first of the equations in (2.16), using
(a)
(monotonicity) in the definition of a symmetrical monoidal preorder:
\[\begin{split}
\begin{align} \\
t & \leq v + w \\
u & \leq u \\
t + u & \leq (v + w) + u \\
\end{align}
\end{split}\]
Similarly for the second equation:
\[\begin{split}
\begin{align} \\
w + u & \leq x + z \\
v & \leq v \\
v + (w + u) & \leq v + (x + z) \\
\end{align}
\end{split}\]
And the third equation:
\[\begin{split}
\begin{align} \\
v + x & \leq y \\
z & \leq z \\
(v + x) + z & \leq y + z \\
\end{align}
\end{split}\]
Using associativity and transitivity, we can combine all three of these equations to get Equation (2.18) in the text.
To answer 3.
, the symmetry axiom does not need to be invoked because wires do not cross.