Exercise 2.43

Exercise 2.43#

x

To show this is indeed a monotone map, we must show \(x ≤_B y\) implies \(f(x) ≥_{Cost} f(y)\) for all \(x,y \in B\). There are only four cases to check:

\[\begin{split} \begin{align} \\ false \leq false & \to \infty \geq \infty \\ false \leq true & \to \infty \geq 0 \\ true \leq false & \to 0 \geq \infty \\ true \leq true & \to 0 \geq 0 \\ \end{align} \end{split}\]

Checking condition (a) of Definition 2.41:

\[ 0 \leq g(true) = 0 \]

Checking condition (b) of Definition 2.41:

\[\begin{split} \begin{align} \\ \infty + \infty \leq g(false) = \infty \\ \infty + 0 \leq g(false) = \infty \\ 0 + \infty \leq g(false) = \infty \\ 0 + 0 \leq g(true) = 0 \\ \end{align} \end{split}\]

Yes, \(g\) is a strict monoidal monotone.