Exercise 2.44

Exercise 2.44#

x

To show \(d\) is a monotone map, we must show \(x ≥_{Cost} y\) implies \(d(x) ≤_B d(y)\) for all \(x,y \in B\). There are only nine cases to check, if we treat all numbers between 0 and \(\infty\) as one of three options for each variable:

\[\begin{split} \begin{align} \\ 0 \geq 0 & \to T \leq T \\ 0 \geq 7 & \to T \leq F \\ 0 \geq ∞ & \to T \leq F \\ 7 \geq 0 & \to F \leq T \\ 7 \geq 7 & \to F \leq F \\ 7 \geq ∞ & \to F \leq F \\ ∞ \geq 0 & \to F \leq T \\ ∞ \geq 7 & \to F \leq F \\ ∞ \geq ∞ & \to F \leq F \\ \end{align} \end{split}\]

Checking condition (a) of Definition 2.41:

\[ T \leq d(0) = T \]

Checking condition (b) of Definition 2.41:

\[\begin{split} \begin{align} \\ d(0) \wedge d(0) = T & \to d(0 + 0) = T \\ d(0) \wedge d(7) = F & \to d(0 + 7) = F \\ d(0) \wedge d(∞) = F & \to d(0 + ∞) = F \\ d(7) \wedge d(0) = F & \to d(7 + 0) = F \\ d(7) \wedge d(7) = F & \to d(7 + 7) = F \\ d(7) \wedge d(∞) = F & \to d(7 + ∞) = F \\ d(∞) \wedge d(0) = F & \to d(∞ + 0) = F \\ d(∞) \wedge d(7) = F & \to d(∞ + 7) = F \\ d(∞) \wedge d(∞) = F & \to d(∞ + ∞) = F \\ \end{align} \end{split}\]

Yes, \(d\) is a strict monoidal monotone.

To show \(u\) is a monotone map, we must show \(x ≥_{Cost} y\) implies \(u(x) ≤_B u(y)\) for all \(x,y \in B\). There are only nine cases to check, if we treat all numbers between 0 and \(\infty\) as one of three options for each variable:

\[\begin{split} \begin{align} \\ 0 \geq 0 & \to T \leq T \\ 0 \geq 7 & \to T \leq T \\ 0 \geq ∞ & \to T \leq F \\ 7 \geq 0 & \to T \leq T \\ 7 \geq 7 & \to T \leq T \\ 7 \geq ∞ & \to T \leq T \\ ∞ \geq 0 & \to F \leq T \\ ∞ \geq 7 & \to F \leq T \\ ∞ \geq ∞ & \to F \leq F \\ \end{align} \end{split}\]

Checking condition (a) of Definition 2.41:

\[ T \leq u(0) = T \]

Checking condition (b) of Definition 2.41:

\[\begin{split} \begin{align} \\ u(0) \wedge u(0) = T & \to u(0 + 0) = T \\ u(0) \wedge u(7) = T & \to u(0 + 7) = T \\ u(0) \wedge u(∞) = F & \to u(0 + ∞) = F \\ u(7) \wedge u(0) = T & \to u(7 + 0) = T \\ u(7) \wedge u(7) = T & \to u(7 + 7) = T \\ u(7) \wedge u(∞) = F & \to u(7 + ∞) = F \\ u(∞) \wedge u(0) = F & \to u(∞ + 0) = F \\ u(∞) \wedge u(7) = F & \to u(∞ + 7) = F \\ u(∞) \wedge u(∞) = F & \to u(∞ + ∞) = F \\ \end{align} \end{split}\]

Yes, \(u\) is a strict monoidal monotone.